«Температурное эхо» от сверхпроводящего фазового перехода в теплоемкости НоВа2Си3О6.95

В.Н. Наумов ^{а)}, Г.И. Фролова ^{а)}, Т. Атаке ^{b)}

^{а)}Институт неорганической химии им. А.В. Николаева СО РАН, 630090 Новосибирск, Россия ^{b)}Лаборатория материалов и структур, Токийский институт технологии 4259, Иокогама 226-8503, Япония

Температурная зависимость теплоемкости С_р(Т) образца НоВа₂Си₃О_{6.95} была исследована выше Т_с с целью выявления аномальных вклалов. Лля выделения аномальной компоненты $\delta C(T)$ в теплоемкости HoBa₂Cu₃O_{6.95} использовалась измеренная теплоемкость другого образца НоВа₂Си₃О_{6+х}, который был синтезирован идентичным образом, и отличался только режимом отжига. Выделенная компонента $\delta C(T)$ имеет сверхпроводящую аномалию (T_c) и еще одну аномалию (T_h) в интервале 250-290 К. Между Т_с, и Т_h наблюдается корреляция: отношение $T_{\rm h}/T_{\rm c}$ близко к трем. Основываясь на полученных результатах, аномалию T_h можно рассматривать как "температурное эхо" от сверхпроводящего фазового перехода.

По-прежнему важным является изучение особенностей в области нормального состояния купратных систем, где многими экспериментами обнаружено псевдощелевое явление, которое сопровождается понижением плотности состояний электронов и наблюдается значительно выше температуры сверхпроводящего перехода. Сейчас неясно, является ли псевдощелевая линия только кроссовером [1,2] или она сопровождается скрытым спонтанным изменением симметрии параметра порядка [3-6]. В работах [7-9] сообщалось об аномалии (T_b) в теплоемкости сверхпроводников $RBa_2Cu_3O_{6+x}$ (где R - Y, Tm, Gd, Nd), которая локализована температурной В области нормального состояния и напоминает фазовый переход. Было замечено [9], что для образцов в пределах 90-градусного плато с изменением Т_с, также изменяется и T_h, при этом отношение T_h/T_c остается близким к трем. Корреляция T_h и T_c указывает на связь между процессом T_h и сверхпроводимостью. В работе [9] такая взаимосвязь между процессом T_h и процессом T_c называется «температурным эхом». В данной работе МЫ представляем исследование теплоемкости образца НоВа₂Си₃О_{6.95}, в котором также обнаруживается отмеченное выше явление.

 $HoBa_2Cu_3O_{6+x}$ Образец приготовлен ИЗ реагентов высокой чистоты методом прокаливания порошков по стандартной технологии. Продукт был идентифицирован методом рентгеновской дифракции, который показал отсутствие других (не орторомбических) фаз. Содержание кислорода было определено иодометрическим титрованием. Состав образца соответствует формуле HoBa₂Cu₃O_{6.95}. Теплоемкость $C_p(T)$ образца НоВа₂Си₃О_{6.95} была измерена в интервале 8-300 К. Для выделения компоненты $\delta C(T)$, из теплоемкости НоВа₂Си₃О_{6.95} был вычтен регулярный фон. В качестве регулярного фона мы использована теплоемкость другого образца HoBa₂Cu₃O_{6+x}. Этот образец был синтезирован тем же способом и отличался только режимом отжига. Измерение было выполнено в том же калориметре с одинаковыми условиями проведения эксперимента в интервале 8-300 К. В теплоемкости этого образца не наблюдалось каких-либо аномалий. Следует отметить, что такой способ выделения аномальной компоненты практически исключат экспериментальные систематические погрешности. Установка и методика измерений описана в работе [10].

Полученная таким способом разность $\delta C(T)$ представлена на Рис.1. Образец НоВа₂Си₃О_{6.95}, как видно из рисунка, имеет особенность: его сверхпроводящая аномалия расщеплена на два пика (с T_c=86 К и T_c= 90 К в максимумах). Кроме сверхпроводящей аномалии имеется еще двухпиковая аномалия в области нормального состояния (аномалия T_h с T_h=257 К и T_h=269 К в максимумах), причем отношение T_h/T_c с хорошей точностью равно 3 для обоих пиков.

В приведенном примере аномалия T_h предстает "температурное эхо" как своеобразное ОТ сверхпроводящего фазового перехода. Полученные результаты подтверждают предположение, высказанное в работе [9]. Наблюдаемая в данной работе (как и ранее в [9]) корреляция между сверхпроводящей аномалией и аномалией T_h может быть указанием на некоторый процесс, который происходит при температуре $T_h \approx 3T_c$ и имеет отношение к явлению сверхпроводимости. Можно полагать, что T_h процесс связан с зарождением сверхпроводимости.

Наличие T_b - процесса в соединениях системы (R)BaCuO подтверждается аномалиями в других физических свойствах. Например, температурная зависимость производной электросопротивления $\rho'(T)/\rho'(200 \text{ K})$ образца YBa₂Cu₃O_{6.85 ± 0.03} (T_c = 92.7 К) показывает резкое изменение этой зависимости именно в температурной области 260-300 К (см. [7]). При исследовании скорости ультразвука в сверхпроводнике GdBaSrCu₃O_{7-x} ($T_c =$ 82 К) наблюдалась ступенчатая аномалия при температуре 245 К [11], указывающая на изменение жесткости решетки. Результаты прецизионных измерений коэффициента теплового расширения $\alpha(T)$ сверхпроводящих монокристаллов YBa₂Cu₃O_{6.95} (T_c=93 K) в интервале 5-500 К для трех орторомбических осей приведены в работе [12]. В зависимости $\alpha(T)$ наблюдаются аномалии, как при температуре сверхпроводящего перехода, так и при температуре Tg = 280 К. Для обеих аномалий (при Т_с и Т_g≈3Т_c) наблюдаются одинаковые амплитуды изменения α(T) (по осям а и b). Это прямое свидетельство изменения фононных характеристик. Анализ особенностей температурного поведения упругих свойств [11] и коэффициента теплового расширения [12] в купратных сверхпроводниках, сделанный в работе [13] показывает, что наблюдаемые особенности, скорее всего, обусловлены формированием упорядочения. зарядового Сейчас считается установленным [14,15], что электрон-фононная связь в купратных сверхпроводниках является сильной. В этих условиях какое-либо изменение электронной структуры неизбежно должно приводить к изменению фононных характеристик. Таким образом, наши результаты и результаты отмеченных выше работ не вступают В противоречие, а наоборот подтверждают существование сильных коллективных эффектов взаимодействия элементарных возбуждений в этих объектах.

Если аномалию T_h (подобно аномалии T_c), можно отнести к электронной подсистеме, и связывать ее с флуктуационным зарождением сверхпроводимости, то процесс T_h должен отражать возникновение псевдощели Δ_p в электронной плотности (индекс р – здесь от слова pairing). В этом случае изменение электронной плотности (она пропорциональна постоянной Зоммерфельда γ), определяется величиной $\Delta \gamma = \Delta S/T_h$ (где ΔS – энтропия аномалии T_h), которая в лучшем случае составляет всего несколько процентов от величины γ . Это изменение γ значительно меньше, чем изменение γ при T_c .

Таким образом, в теплоемкости $HoBa_2Cu_3O_{6.95}$ обнаружена аномалия T_h . Аномалия выглядит как фазовый переход. Форма аномалии T_h повторяет форму аномалии T_c . Температура аномалии T_h коррелирует с T_c , так что выполняется соотношение $T_h = 3 \ T_c$.

Наличие T_h процесса в соединениях (R)BCO_x подтверждается особенностями в других свойствах, при этом корреляция между температурами T_c и T_h также наблюдается.

Оба процесса T_c и T_h приводят к изменению, как электронных, так и фононных характеристик. Это еще одно свидетельство их родства и может быть объяснено сильным электрон-фононным взаимодействием в этих системах. Отмеченные свойства позволяют назвать T_{h} процесс "температурным эхом" от сверхпроводящего фазового перехода.

Взаимосвязь T_h и T_c процессов наводит на мысль, что явление при T_c и явление при T_h -И они оба связаны родственны co сверхпроводимостью. При этом T_h – процесс можно интерпретировать как зарождение спаренных Понижение носителей заряда. плотности электронных состояний при этом процессе можно связать со сверхпроводящей псевдощелью $\Delta_{\rm p}$. Таким образом, обнаруженное нами явление, возможно. является термодинамическим свидетельством существования сверхпроводящей псевдощели, возникающей при температуре ~3 Т_с.

Работа выполнена при поддержке РФФИ (Проект № 03-03-32446а)

- Randeria, M., Trivedi, N., Moreo, A., Scalettar, R. T. Phys. Rev. Lett. 69, 2001 (1992).
- 2. Emery, V. J., Kivelson, S. A. Nature 374, 434 (1995).
- 3. Varma, C. M. Phys. Rev. Lett. 83, 3538 (1999).
- Chakravarty, S., Laughlin, R.B., Morr, D. K., Nayak, C. Phys. Rev. B63, 094503 (2001).
- Ivanov, D. A., Lee, P. A., Wen, X.-G. Phys. Rev. Lett. 84, 3958 (2000).
- A. Kaminski, S. Rosenkranz, H. M. Fretwell et al., Nature 416,610 (2002).
- V.V.Nogteva, V.N.Naumov, A.N.Lavrov. Russian Journal of Physical Chemistry. 72 (1998) 1629.
- V.N. Naumov, G.I. Frolova, V.V. Nogteva, N.I. Matskevich, R.W. McCallum. Chemistry for Sustainable Development 8 (2000) 143.
- V.N. Naumov, A.I. Romanenko, G.I. Frolova, V.V.Nogteva, O.B.Anikeeva, T.Atake. Physica C, 388 (2003) 359.
- T.A.take, H.Kawaji, A.Hamono and Y.Saito. Report Res.Lab.Eng.Mater., Tokyo Inst.Technol., 15, 13-23 (1990).
- Ahmad Kamal Yahya, A.K. Koh, R. Abd-Shukor. Physics Letters A 259 1999 295–301.
- P. Nagel, V. Pasler, C. Meingast, A.I. Rykov, S.Tajima. Phys.Rev.Lett. 85, 2376 (2000).
- 13. V. E. Gusakov, Cond-mat/0204408.
- 14. E.G. Maksimov. Physics Uspekhi 43 (2000) 965.
- V.M. Loktev, R.M. Quick, S.G. Sharapov. Physics Reports **349** (2001) 1-123.