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The intervortex interaction is investigated in 
very anisotropic layered superconductors in tilted 
magnetic field. In such a case, the crossing lattice of 
Abrikosov vortices (AVs) and Josephson vortices 
(JVs) appears. The interaction between pancakes 
vortices (PVs), forming the AVs, and JVs produces 
the deformation of the AV line. It is demonstrated 
that in the result of this deformation a long range 
attraction between AVs is induced. This phenome-
non is responsible for the dense vortex chains for-
mation. The vortex structure in weak perpendicular 
magnetic field is the vortex chain phase, when only a 
small part of JVs is occupied by AVs. 

Vortex physics in layered superconductors occurred 
to be extremely rich and interesting. In moderately ani-
sotropic superconductors, the tilted magnetic field leads 
to the formation of the vortices inclined towards the 
superconducting layers. The interaction between such 
tilted vortices happens to be quite unusual. 

In the plane defined by the vortex line direction and 
the c-axis (normal to the superconducting planes), the 
interaction between tilted vortices is attractive at long 
distances. Such attractive intervortex interaction is 
quite unexpected and leads to the formation of the vor-
tex chains where the intervortex distance is governed 
by the balance between the long range attraction and 
the short range repulsion. The existence of these vortex 
chains in tilted field in layered superconductors has 
been predicted in [1, 2], and subsequently confirmed by 
the decoration technique [3],   and the scanning-
tunneling microscopy [4],   measurements in 
YBa2Cu3O7 and NbSe2 crystals respectively. Recently 
the vortex chains were observed in an unconventional 
superconductor Sr2Ru04 by the µSQUID force micros-
copy [5]. The systems studied in [3-5],   are character-
ized by the moderate anisotropy. The theoretical ap-
proach [1, 2] is completely applicable to this case and 
gives a good qualitative and quantitative description of 
this phenomenon.  

On the other hand, in the much more anisotropic 
Bi2Sr2CaCu2Ox (BSCCO) single crystals in [6-7],   a 
more complicated mixed vortex chain-vortex lattice 
phase has been observed. As it has been demonstrated 
in [8] in strongly anisotropic layered superconductors 
in tilted magnetic field, a crossing lattice of Abrikosov 
and Josephson vortices (JVs), a combined lattice, must 
exist. Abrikosov vortex is in fact a line of pancake vor-
tices (PVs) interacting with JVs. Following [9], the 
perpendicular vortex line formed by the PVs is de-
formed and attracted by JVs, so the JVs stacks accumu-
late additional PVs, creating vortex row with enhanced 
density [6-7].   This scenario has been proposed in [9] 
to explain the mixed chain-lattice state formation. Very 

recently, the detailed Hall probe and magneto-optic 
studies of vortex chains in BSCCO have been per-
formed and revealed the stability of the dense vortex 
chains state even in the absence of lattice and in a very 
weak perpendicular magnetic field [10, 11]. 

 Here we discuss the proposed in [12] mecha-
nism of the formation of such dense vortex chain due to 
the attraction between the deformed lines of pancakes 
vortices.  The deformation, responsible for a long range 
attraction, appears due to the interaction with JVs. In 
the result, the mechanism of vortex chains formation, in 
tilted field, in strongly anisotropic superconductors, 
appears to be quite similar to the case of moderately 
anisotropic superconductors [1, 2],  

Keeping in mind BSCCO, let us consider the lay-
ered superconductor with high anisotropy ratio γ 
=λc\ λab ~ 200-500, where λc is the penetration depth 
for currents along c-axis (perpendicular to the layers), 
and λab is the penetration depth for currents in the ab 
plane (parallel to the layers). The in-plane field Bx 

=Bcosθ penetrates inside the superconductor in the 
form of JVs, while the perpendicular field B z =Bsinθ 
creates the PVs which interact with JVs via the Joseph-
son coupling [9]. We consider the case of the very 
weak coupling of the layers when the Josephson's core 
radius λJ = γs, (s is the interlayer spacing) is larger than 
an in-plane penetration depth, i.e. λJ >> λab. The inter-
action between JVs and PV produces a zigzag dis-
placement of PVs along the x-axis, see Fig.1.  
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Fig. 1. Zigzag deformation of the pancake vortex 

stacks in the presence of parallel Josephson vortices.  
 
In the limit of weak Josephson coupling, the inter-

action which stabilizes the straight PVs line is mainly 
of an electromagnetic origin. Then we may use the 
general expression for the energy of an arbitrary con-
figuration of pancakes in the framework of the electro-
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magnetic model to calculate the energy increase due to 
the line deformation [12]. 

Let us consider the limit of weak parallel field, 
when the Josephson vortices are well separated and the 
distance D between them along z-axis strongly exceeds 
the interlayer distance s, i.e. Bx<<H0=Φ0/γs2, see Fig. 2. 

 

 
 
Fig. 2. Schematic picture of deformed vortex line. 
 
As it has been demonstrated in [9], if the JV is lo-

cated between the layers 0 and 1, the pancake dis-
placements un on the n-th layer in the case of the single 
Abrikosov vortex is 















 −

≈

ab

J
J

ab
n

n
u

λ
λλ

λ

ln
2
1

2 . 

To consider the interaction of these deformed vor-
tices, it is convenient to add the fictive pair of pancake 
vortex and antivortex at the central line of the 
Abrikosov vortex. Then the obtained configuration will 
be equivalent to two straight Abrikosov vortices and to 
two vortex-antivortex pairs at the distance x in each 
layers. Vortex and antivortex are separated by the dis-
tance un, and we are coming to the problem of an inter-
action of such magnetic dipoles. Firstly note that the 
interaction between dipoles in the same layer is attrac-
tive, and it may be directly calculated: 
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 It is much larger then the interaction between di-
poles from different layers n and m, which may be at-
tractive or repulsive. The main contribution to the di-
pole interaction energy is coming from the interaction 
in the same layer, and it may estimated (per period D of 
the modulation of PVs line along z- axis) as 
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The main contribution to the repulsion energy is 
coming from the straight Abrikosov vortices interac-
tion, and per period D at distances x>> λab it is 
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The prevailing interaction between Abrikosov vor-
tices at long distances is attraction, and it will lead to 
the vortex chain creation. However, the relative 
strength of attraction is much smaller, as the attraction 
is coming only from the PVs near JVs , and other PVs 
contribute to the repulsion. In the result, the distance 
between Abrikosov vortices in the chain may be esti-
mated as 
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Then the perpendicular vortices also appear as the vor-
tex chains, and when the perpendicular field increases 
it will lead firstly to the increase of the number of these 
chains, each chain located at JVs. The distance between 
the chains will be the integer number of the distance 
between JVs along y- axis. Finally, when all JVs will 
contain chains, then the formation of the usual 
Abrikosov lattice will start. Namely this case corre-
sponds to a mixed vortex chain-vortex lattice observed 
in [6-7]. 
   The distance between Abrikosov vortices in chain is 
always around λab and slightly varies with Bx. On the 
other hand, the energy of vortex coupling in chain is 
maximal at Bx~ H0, and then they are more stable at 
this conditions. At low or high Bx limits, we may ex-
pect the melting of vortex lines. The detailed analysis 
of  different crossing lattices has been recently per-
formed in [13]. 
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