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The Ginzburg-Landau (GL) theory [1] of 1950 is 

a very powerful phenomenological description of the 
thermodynamic and electrodynamic behavior of 
superconductors.  In particular, the GL theory di-
vides the superconducting materials into two 
groups: Type I superconductors (with GL parame-
ter к < 0.707) have positive energy of the wall sepa-
rating normal conducting and superconducting do-
mains, and type II superconductors (with  к > 0.707) 
have negative wall energy and are thus unstable 
with respect to the formation of inhomogeneities. By 
solving the GL equations, Abrikosov [2] showed that 
magnetic flux can penetrate type II superconductors 
in form of a lattice of vortices. For these discoveries 
Alexei A. Abrikosov and Vitalii L. Ginzburg were 
awarded the Nobel Prize in Physics in October 2003. 

 
 
When a magnetic field H is applied parallel to a 

long type II superconductor, vortices start to penetrate 
when  µ0H reaches the lower critical field Bc1 ≈ Ф0(lnκ 
+0.5)/4πλ2, where Ф0 = h/2e is the quantum of mag-
netic flux and λ the magnetic penetration depth. With 
increasing H the vortex density n and magnetic induc-
tion B = nФ0 increase until the vortex cores overlap 
completely such that the bulk superconductvity van-
ishes at the upper critical field µ0H = B = Bc2 = Ф0/2πξ2, 
where  ξ = λ/κ is the GL coherence length. Abrikosov 
[2] obtained this qualitative picture by solving the lin-
earized GL equations valid at large B near Bc2 and the 
full GL equations at small B << Bc2 where the vortices 
are nearly isolated. 

 
Approximate solutions of GL theory valid at all in-

ductions where obtained by the circular cell method 
[3]. A very accurate and fast numerical method [4,5] 
uses a Fourier series ansatz for the periodic magnetic 
field B(x,y) and the order parameter |ψ(x,y)|2 and ob-
tains the Fourier coefficients by iteration. An example 
for these solutions is shown in Fig. 1 for the triangular 
vortex lattice with κ = 5 and vortex spacing a = 4λ  and 
2λ, corresponding to b = B/Bc2 = 0.018 and 0.072. The 
resulting magnetization curves in reduced units h = 
µ0H/Bc2, b = B/Bc2, m(b) = b – h(b) are shown in Fig. 2. 
It turns out that the old logarithmic approximation –m 
= (1/4κ2) ln(0.36/b) applies only at very large κ > 20 in 
the small interval 1/2κ2 < b < 0.01 at very low (but not 
too low) inductions. Better fits for κ  > 20 are given in 
[5].  For  κ < 20 a very good fit to the exact h(b) which 
exactly satisfies the well known conditions h(0) = hc1, 
h’(0) = h’’(0) = h’’(1) = 0, h(1) = 1, h’(1) = 1 – p(κ) 

with p(κ) = -dm/db|b=1 = 1/[(2κ2 -1)βA+1], βA = 1.15960 
(1.18034) for the triangular (square) vortex lattice, is 
(see dotted lines in Fig. 2): 

 
         h(b) = hc1 + c1 b3 / (1 +c2b +c3 b2 )  
 
with  hc1 =  Bc1/Bc2  = [ln κ + α(κ)] / 2κ2, 
 
         α(κ) = 0.5 +(1 + ln 2) / (2κ -21/2 +2), 
 
         c1 =  (1 - hc1 ) 3 / (hc1 -p) 2 , 
         c2 =  (1 -3hc1 +2p)  / (hc1 -p) ,  
         c3 =  1 +(1-hc1) (1 -2hc1 +p) / (hc1 -p) 2

 .  

 

  Fig. 1. Two computed profiles of the magnetic 
field B(x,y) and order parameter  |ψ(x,y)|2  of the trian-
gular vortex lattice with spacings a=4λ (solid lines) and 
a=2λ (thin lines). The dashed lines show the magnetic 
field of an isolated vortex line. 

 
Recently, the Fourier-series solution method [4,5] 

was extended [6] to the ideal periodic vortex lattice in  
infinite superconducting films of arbitrary thickness d 
put into a perpendicular magnetic field along z. Now  
|ψ(x,y,z)|2   and B(x,y,z) = (Bx,By,Bz) depend on z. The 
GL free energy of a film contains also the energy of the 
magnetic stray field that is required to make Bz(x,y,z) 
continuous across the surfaces |z| = d/2. As shown in 
Fig. 3, the magnetic field lines are now no longer paral-
lel inside the superconductor but they widen near the 
surface to minimize the stray-field energy. For thick 
films with d >> λ,  the stray-field energy  tends to a 
constant value. For thin films with d << λ, the modula-
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tion of B(x,y,z) is small when the vortex spacing is 
smaller than the effective penetration depth Λ = λ2/d. 
This means that, as expected, the magnetic field in very 
thin films is nearly uniform and equal to the applied 
field. Only at very small applied fields with a > Λ, the 
vortex fields can be distinguished. The GL and London 

solutions for isolated vortices, and vortices with well 
separated cores, in thick and thin flims are given in [7].   

Fig. 2.  Computed magnetization curves –m(h) and 
h(b) of the triangular GL vortex lattice (solid lines), 
coinciding within line thickness with those of the 
square vortex lattice. The dots show the above fit. 

    
The above computations apply to ideal periodic vor-

tex lattices for all values of b,  κ, and d. For low b <<1 
and not to small κ >>1, the properties of arbitray ar-
rangements of straight or curved vortex lines can be 
calculated from London theory by linear superposition 
of the magnetic fields. For small displacements from 
the ideal triangular vortex lattice, approximate GL solu-
tions can be written, from which the linear elastic en-
ergy of the vortex lattice can be obtained. Interestingly, 
it turns out that the elasticity of the vortex lattice is 
highly nonlocal [8], i.e., the elastic moduli for com-
pression (c11) and tilt (c44) are dispersive, while the 
shear modulus c66 is approximately independent of the 
wave vector k of the strain. This elastic nonlocality 
makes the vortex lattice very soft for short-wavelength-
distortions and increases both its thermal fluctuations 
and its pinning by material inhmogeneities [8]. One has 
approximately for not too small inductions  b > 1/2κ2 : 

 
    c66   ≈  (BФ0 / 16 π µ0 λ2) (1-b) 2   <<  c11 , 
    c11   ≈  c44 ≈  (B2 / µ0) / [ 1 + k2 λ2/(1-b) ] .   
 
In High-Tc Superconductors (HTS), the vortex lat-

tice is further softened by the strong anisotropy of the 
magnetic penetration depth. In highly anisotropic lay-
ered superconductors, the superconducting layers can 
be nearly decoupled, and the tilt modulus of the per-
pendicular vortices (“pancake stacks”) may be even 
smaller than the shear modulus.  

 
 
 Fig. 3. The magnetic field lines (top) and profiles 

of the order parameter |ψ(x,y,z)|2 and magnetic field 
Bz(x,y,z) (bottom) for a superconducting thick film or 
half space, calculated from GL theory for induction 
b=0.04 and  κ = 1.4, triangular vortex lattice with spac-
ing a ≈10λ (a = unit length), film thickness  d = 0.8a ≈ 
8λ. Bottom: The solid lines show the profiles in the 
central plane z=0 (or in the bulk). The dashed lines 
show the profiles at the surfaces |z| = d/2. The dotted 
line marks the average induction B. 

 
The perhaps most fascinating recent discovery [9] is 

that the “Josephson vortices” that run between the lay-
ers, can be decorated by “pancake vortices” that they 
attract and which indeed were observed [10] at the sur-
face of layered HTS in form of dense vortex rows. 
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