Фазовое расслоение на границе сверхпроводящей, антиферромагнитной и парамагнитной фаз в квазиодномерном соединении (TMTSF)₂PF₆

А. В. Корнилов, А. С. Кириченко, А. В. Мальгинов, В М. Пудалов Физический институт им. П.Н. Лебедева РАН, 119991 Москва, Россия

Экспериментально изучалась фазовая диаграмма состояний и характер фазовых переходов в квазиодномерном органическом соединении (TMTSF)₂PF₆ в окрестности границ между фазами парамагнитного "металла", антиферромагнитного изолятора и сверхпроводника. Обнаружено, что при пересечениии фазовой границы путем развертки магнитного поля возникают эффекты истории: сопротивление зависит от траектории, по которой система попала в данную точку Р-В-Т фазового пространства. Эти результаты свидетельствуют о наличии макроскопически неоднородном состояния, в котором имеются пространственно разделенные включения миноритарной фазы в основную. При значительном удалении от границы восстанавливается однородное состояние.

Взаимодействие (т.е. сосуществование или конкуренция) магнитного упорядочения спинов и сверхпроводящего спаривания электронов в низкоразмерных соединениях вызывает большой интерес. Фазовая диаграмма состояний для квазиодномерного соединения (TMTSF)₂PF₆ весьма похожа на диаграмму для купратных сверхпроводников. В отсутствии магнитного поля имеется очень узкий диапазон давлений (~0.53-0.6 ГПа), в котором при понижении температуры возникают два электронных фазовых перехода (см. Рис. 1) [1,2]: вначале из парамагнитной металлической (PM) фазы в антиферромагнитый изолятор (AF), с образованием волны спиновой плотности, и затем, из АF в сверхпроводящее (SC) состояние. На Рис. 1 нанесена также вертикальная траектория Р=0.54 ГПа, которая пересекает две фазовые границы (фазовые переходы II рода).

Пересечение границ вызывает изменение сопротивления, которое имеет "металлический" характер (dR/dT>0) в фазе PM, активационный характер [$R \propto \exp(\Delta/T)$] в фазе AF, и падает до нуля в фазе SC.

Помимо классического однофазного состояния системы вблизи фазовой границы, теоретически возможно возникновение гетерофазных состояний: например, микроскопически смешанного двухфазного состояния или макроскопически неоднородного состояния с разделением фаз. Отличить эти типы состояний можно изучая свойства системы в окрестности точки перехода.

В данной работе эта задача решена следующим способом. Из предшествующих работ [3], следует, что с ростом магнитного поля граница $T_0(P)$ между АF и PM фазами смещается в сторону более высоких температур. Ввиду плавной и монотонной зави-

симости границы T_0 от поля, возникает возможность управлять ее положением с помощью поля и, т.о., осуществлять пересечение границы путем изменения магнитного поля при фиксированных значениях давления P и температуры T. Такой экспериментальный подход избавляет от необходимости плавной развертки давления при низких температурах.

Монокристаллы (ТМТЅF)₂PF₆ были выращены электрохимическим способом; типичные размеры образцов составляли $2 \times 0.8 \times 0.3$ мм³, вдоль кристаллических направлений *a*, *b*, и *c*, соответственно. Образец и датчик давления помещались в немагнитную камеру высокого давления, заполненную полиэтилсилоксаном. Требуемое давление создавалось в камере при комнатной температуре, после чего камера медленно (~12ч) охлаждалась. Магнитное поле было направлено вдоль оси *c*, а измерительный ток вдоль оси *a* кристалла.

Рис. 1. Фазовая *P-T* диаграмма (TMTSF)₂PF₆ в отсутствие поля. На вставке показано изменение R(T) при *P*=0.54 ГПа.

При выборе начальной точки P,T вблизи, но выше чем P_0 , $T_{0,r}$, сопротивление меняется незначительно с полем вплоть до $B \sim 7T$ (Рис. 2). При дальнейшем росте поля сопротивление резко возрастает на 2-3 порядка величины, что свидетельствует о переходе из металлической РМ в диэлектрическую AF фазу. На фоне растущей монотонной компоненты сопротивления, начиная с $B \sim 8T$, заметны немонотонные периодические изменения сопротивления, совершенно не типичные для AF фазы.

При уменьшении **B** от 16 до 7T, выявляется сильный гистерезис (~50%) сопротивления (Рис. 2), а немонотонная компонента практически исчезает. Гистерезис R(B), а также появление и исчезновение немонотонной компоненты зависят только от абсолютной величины поля |B|, и не зависят от его направления: R(B)=R(-B) при одинаковой истории

изменения |B|. Гистерезис увеличивается с ростом поля. При повторной развертке поля от 0 до 16Т зависимость R(B) полностью воспроизводится.

Рис. 2. Изменение сопротивления с магнитным полем в случае пересечения границы РМ и AF фаз. Резкий рост R(B) при $B \sim 7$ Т соответствует переходу РМ – AF. На вставке изображена типично-"металлическая" зависимость R(T) в начальном состоянии при B=0.

Осциллирующая компонента сопротивления более отчетливо видна на производной dR/dB [4]. Важно то, что осцилляции dR/dB наблюдаются только при увеличении поля и практически исчезают при уменьшении поля от 16Т. Положения пиков dR/dB хорошо совпадают с ожидаемым положением границ между фазами индуцированной магнитным полем волны спиновой плотности FISDW фаз в чисто РМ состоянии [5]. Существование этих пиков было бы вполне естественно для РМ состояния, но совершенно неожиданно для состояния AF. На зависимости dR(B)/dB не наблюдается пик в поле *В*≈14Т, который можно было бы ожидать для РМ состояния [5], что указывает на почти полное исчезновение РМ фазы и восстановление гомогенного АF состояния в поле $B \sim 14$ Т. Гистерезис в R(B) исчезает также с ростом температуры.

Обсуждение результатов. Очевидно, что перечисленные результаты не соответствуют поведению, ожидаемому для микроскопически смешанного состояния с сосуществованием двух фаз. В таком состоянии эффекты гистерезиса и зависимость фазового состава от предистории не могут иметь места. Описанное поведение также не типично для однородно "переохлажденной" или "перегретой" фазы при переходах I рода. Помимо того, для перехода II рода в однородной системе, каким является AF-PM, гистерезис переход И "перегрев/переохлаждение" вообще не должны возникать. В той области фазового пространства, где должна существовать только РМ (или AF) фаза, помимо ожидаемых признаков "правильной" фазы, наблюдаются признаки противоположной фазы. Таким образом, возникновение гистерезиса при переходе II рода и явные признаки наличия обеих фаз в одной и той же области фазового пространства свидетельствуют о том, что фазовый состав системы становится неоднородным. Применяя полученные результаты к сверхпроводящему переходу, можно ожидать возникновения аналогичного фазонеоднородного состояния на границе AF и SC фаз; можно также отметить интересную возможность возникновения сверхпроводящего состояния не непосредственно из антиферромагнитного изолятора (Рис. 1), а путем зарождения сверхпроводимости во включениях миноритарной металлической фазы.

Полученные результаты однозначно свидетельствует о том, что вблизи фазовой границы между фазами PM, AF возникает неоднородное состояние со включениями миноритарной фазы в основную фазу. Этот вывод основан на результатах, не зависящих от модельных предположений о пространственном устройстве неоднородного состояния, поскольку для идентификации фазового состава мы использовали качественное различие в поведении сопротивления в фазах AF и PM. Отметим, что гистерезис величины и характера изменения сопротивления не связан с неоднородностью образца, не зависит от времени и является стационарным и хорошо воспроизводимым эффектом.

Работа поддержана РФФИ, Программами "Поддержка ведущих научных школ", ФЦП "Квантовая макрофизика", "Интеграция", ФЦНТП "Фундаментальные исследования в области физических наук", "Высокотемпературная сверхпроводимость" и Научной программой ОФН РАН "Сильно коррелированные электроны".

1. P. M. Chaikin, J. Phys. I (France) 6, 1875 (1996).

2. T. Vuletic, P. Auban-Senzier, C. Pasquier, et al. Eur. Phys. J. B 25, 319 (2002).

3. N. Matsunaga, K. Yamashita, H. Kotani, et al. Phys. Rev. B 64, 052405 (2001).

4. A. V. Kornilov, V. M. Pudalov, Y. Kitaoka, et al. Phys. Rev. B 69, 224404 (2004).

5. A. V. Kornilov, V. M. Pudalov, Y. Kitaoka, et al. Phys. Rev. B 65, 60404, (2002).