Локализованная сверхпроводимость в гибридных структурах сверхпроводник-ферромагнетик

А.Ю. Аладышкин, А.С. Мельников, Д.А. Рыжов, А.В. Соколов, А.А. Фраерман, Институт физики микроструктур РАН, 603950, Нижний Новгород, Россия А.И. Буздин

Centre de Physique Moleculaire Optique et Hertzienne, Universite Bordeaux 1-UMR 5798, CNRS, F-33405 Talence Cedex, France

В рамках теории Гинзбурга-Ландау исследовано формирование локализованного сверхпроводящего состояния в тонкопленочных гибридных структурах сверхпроводник—ферромагнетик (S/F) и изучены особенности зависимости критической температуры сверхпроводящей пленки T_c от внешнего магнитного поля H. Для рассматриваемых S/F систем предсказана необычная нелинейная (в ряде случаев немонотонная) зависимость $T_c(H)$ в области слабых магнитных полей.

Представляет несомненный интерес изучение вопроса о сосуществовании магнитного и сверхпроводящего порядков в гибридных S/F структурах и ферромагнитных сверхпроводниках [1]. В качестве ферромагнитной подсистемы в гибридных S/F структурах могут быть использованы ансамбли магнитных частиц или ферромагнитные пленки с доменной структурой. Практический интерес к изучению сверхпроводящих свойств гибридных S/F структур связан с возможностью создания на их основе систем с контролируемым пиннингом. Далее мы будем предполагать, что сверхпроводящая пленка отделена от ферромагнетика изолирующим слоем, что позволяет пренебречь обменным взаимодействием и эффектом близости по сравнению с орбитальным эффектом (разрушением сверхпроводимости магнитным полем). Неоднородное магнитное поле, индуцированное ферромагнетиком, изменяет условия зарождения сверхпроводимости, поэтому гибридные S/F системы могут обладать необычной фазовой диаграммой Н-Т (см., например, [2,3,4]), в частности, нелинейной зависимостью критической температуры T_c от внешнего магнитного поля Н. В тонких сверхпроводящих пленках (толщина D_{S} которых значительно меньше длины когерентности ξ), формирование зародышей сверхпроводящей фазы будет определяться профилем перпендикулярной к плоскости пленки компоненты магнитного поля $B_z(x,y)$.

Зависимости $T_c(H)$ для гибридных S/F систем могут быть рассчитаны на основе линеаризованного уравнения Гинзбурга-Ландау в заданном магнитном поле $B_z(x,y)$:

 $-(\partial/\partial r + 2\pi i A(r)/\Phi_0)^2 \Psi = \xi^{-2}(T)\Psi,$ (1) где A(r) – векторный потенциал, B = rot A, Φ_0 – квант магнитного потока, $\xi(T) = \xi_0 (1 - T/T_{c0})^{-\frac{1}{2}}$ – длина когерентности, T_{c0} – критическая температура

сверхпроводника при B=0, (x,y) – плоскость пленки. Заметим, что уравнение (1) эквивалентно уравнению Шредингера для двумерного электронного газа в неоднородном магнитном поле. Наименьшее значение величины $\xi^{-2}(T)$ при заданном внешнем магнитном поле $H=Hz_0$ определяет критическую температуру T_c перехода пленки в сверхпроводящее состояние. Мы предполагаем, что доменная структура ферромагнитной пленки или намагниченность магнитных частиц не изменяются при приложении внешнего магнитного поля.

Адекватным приближением для описания полей рассеяния реальных S/F систем с доменной структурой может служить одномерная модель, $B_z = B_z(x)$. Если $l \ll w \ll D_F \left(l = (\Phi_0/2\pi B_0)^{1/2} - \text{характерный} \right)$ размер зародыша, w — ширина доменов, B_0 — амплитуда неоднородной компоненты магнитного поля в плоскости пленки), то задача (1) сводится к задаче о формировании сверхпроводящего зародыша в поле изолированной доменной стенки, при этом $B_z(x)=H+B_0$ sgn(x). Было обнаружено (сплошная линия на рис. 1a), что вблизи T_{c0} зависимость $T_{c}(H)$ становится немонотонной - реализуется режим возвратной сверхпроводимости. В слабых магнитных полях ($|H| < B_0$) сверхпроводящий зародыш локализован вблизи доменной стенки, а при дальнейшем увеличении внешнего поля зародыш перемещается вглубь домена. Максимальная критическая температура реализуется при $|H|=B_0$, когда происходит полная компенсация поля внутри соответствующих

Для S/F систем с одномерной доменной структурой, для которой L,D_F «w $(L=(\Phi_0/\pi|B_z(x_0)|)^{\hat{I}/\hat{3}}$ – характерный размер зародыша, $B_z(x_0)=0$), мы имеем другое распределение магнитного поля вблизи доменной стенки: $B_z(x) = H + (2B_0/\pi) \ arctg(D/x)$ [5]. Поэтому в слабых магнитных полях ($H \ll B_0$) сверхпроводящий зародыш располагается вдали от доменной стенки (в глубине домена), а при увеличении внешнего поля зародыш перемещается к доменной стенке. Зависимость $T_c(H)$, полученная в результате численного решения уравнения (1), представлена на рис. 1b. Получены асимптотические выражения для $(T_{c0}\text{-}T_c)/\Delta T_c^{orb} \approx (\Phi_0/B_0D^2)^{1/3}$ зависимости $T_c(H)$: $sin^{4/3}(\pi|H|/(2B_0))$ при |H|« B_0 и $(T_c-T_{c0})/\Delta T_c^{\ orb}=I-|H|/B_0$ при |H|» B_0 , где $\Delta T_c^{\ orb}=T_{c0}$ с $^2/l^2$.

Если период одномерной доменной структуры будет сравним с характерным размером зародышей,

необходимо учитывать их взаимодействие. Фазовая диаграмма Н-Т для тонкой сверхпроводящей пленки в периодическом магнитном поле представлена на рис. 1с. Для больших значений параметра $\pi B_0 w^2 / \Phi_0$ зависимость $T_c(H)$ (сплошная линия на рис. 1с) близка к соответствующей зависимости для пленки в поле изолированной доменной стенки (рис. 1а) за исключением области температур, близких к T_{c0} : $\Delta T \sim 4T_{c0}\xi_0^2/w^2$. При $\pi B_0 w^2/\Phi_0 < 2.0$ исчезает возвратная сверхпроводимость и зависимость $T_c(H)$ становится похожей на соответствующую зависимость для пленки в однородном магнитном поле (пунктирная линия на рис. 1с). Это связано с сильным перекрытием волновых функций зародышей, локализованных на разных доменных стенках, что приводит к эффективному усреднению магнитного поля.

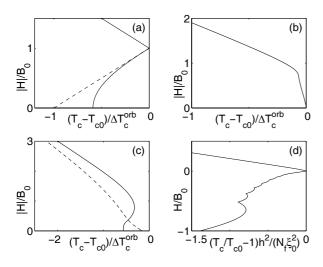


Рис. 1. Фазовая диаграмма H-T для различных S/F систем: (а) изолированная доменная стенка в толстой F пленке; (b) изолированная доменная стенка в тонкой F пленке, $B_0D_F^2/\Phi_0=25$; (c) периодическая одномерная структура, $\pi B_0 w^2/\Phi_0=5$ (сплошная линия) и $\pi B_0 w^2/\Phi_0=I$ (пунктирная линия); (d) магнитная частица над сверхпроводящей пленкой (N_f =I0).

Для учета двумерного характера полей рассеяния в реальных S/F системах была рассмотрена задача о формировании зародыша в сверхпроводящей пленке в поле магнитной частицы с моментом $M = Mz_0$, находящейся на высоте h. Было показано, что критическая температура пленки T_c осциллирует при изменении внешнего магнитного поля Н (рис. 1d), а фазовая диаграмма *H-T* становится асимметричной: $T_c(H) \neq T_c(-H)$. Необходимым условием возникновения осцилляций $T_c(H)$ является существование в плоскости пленки замкнутых контуров, на которых *z*-компонента полного магнитного поля обращается в нуль. При изменении внешнего поля H меняется площадь, охваченная таким контуром, что приводит к скачкообразному изменению орбитального момента куперовской пары (завихренности). Ранее подобные осциллирующие зависимости T_c от внешнего магнитного поля H (эффект Литтла-Паркса) наблюдались в только многосвязных и мезоскопических сверхпроводниках. Гибридные S/F структуры позволяют наблюдать эффект квантования флуксоида в тонких сверхпроводящих пленках большого размера, и поэтому данный класс сверхпроводящих систем удобен для наблюдения макроскопических квантовых эффектов. Показано, что характерный масштаб осцилляций T_c по магнитному полю имеет порядок B_0/N_f и по температуре $-T_{c0}B_0/H_{c2}(0)$, где $B_0=2M/h^3$ — максимальное поле, создаваемое магнитной частицей, $H_{c2}(0)=\Phi_0/2\pi\xi_0^2$ — верхнее критическое поле, $N_f=4\pi M/((27)^{1/2}h\Phi_0)$ — число квантов потока через контур, ограниченный линией $B_z(x,y)=0$ при H=0.

Локализованные сверхпроводящие состояния могут быть обнаружены по результатам транспортных и магнитных измерений. Оценки параметров реальных гибридных систем указывают на возможность экспериментального обнаружения предсказанных эффектов. Действительно, используя типичные параметры ферромагнитных $(4\pi M \sim 10^3 \ \Gamma c)$, получаем следующие интервалы магнитных полей $\delta H \sim 10^2 - 10^3 \Gamma c$ и температур $\delta T = T_{c0}$ - $T_c \le l \ K$ для пленок Nb и $\delta T \le 0.02 \ K$ для пленок YBaCuO, в которых должна наблюдаться нелинейность зависимости $T_c(H)$. Используя типичные для магнитной частицы параметры $M \sim 3 \cdot 10^{-11} \ \Gamma c \cdot c M^3$ и $h\sim300$ нм, получаем $N_{c}\approx10$, $\Delta H\sim10$ -100 Γc , $\Delta T_{c}\sim0.1$ Kдля пленок Nb и $\Delta T_c \sim 0.01$ K для пленок YBaCuO. Аномалии на зависимости $T_c(H)$ (изломы и изменение наклона dT_c/dH) для пленок Pb с ансамблем намагниченных частиц СоР наблюдались экспериментально в работе [2]. Изменение величины T_c и наклона dT_c/dH после перемагничивания ферромагнитной пленки, сходное с нашими предсказаниями, было обнаружено в работе [3]. Осцилляции критической температуры для пленок Nb с ансамблем магнитных частиц CoGd наблюдались экспериментально в работе [4].

Представляемые результаты опубликованы в работах [6]. Работа поддержана грантом Президента РФ (МД-141.2003.02), грантом РФФИ (№03-02-16774) и Фондом содействия отечественной науке.

- 1. А.И. Буздин, Л.Н. Булаевский, С.В. Панюков, ЖЭТФ **87**, 299 (1984); J. Flouquet and A. Buzdin, Physics World **15**, 41 (2002).
- 2. M. Lange *et al.*, Phys. Rev. Lett. **90**, 197006 (2003).
- 3. M. Lange *et al.*, Phys. Rev. B **68**, 174522 (2003).
- 4. Y. Otani *et al.*, Journ. Magn. Magn. Mater. **126**, 622 (1993).
 - 5. Э.Б. Сонин, Письма в ЖТФ 14, 1640 (1988).
- 6. A.Yu. Aladyshkin *et al.*, Phys. Rev. B 184508 (2003); A.Yu. Aladyshkin *et al.*, J. Phys.: Condens. Matter **15**, 6591-6597 (2003).